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The process of homogeneous formation of a condensed phase is traditionally regarded as 
a two-stage process: the emergence of nucleation centers and their further growth in the 
supersaturated vapor. It is tacitly assumed that the spectrum of dimensions of the conden- 
sate particles is determined by the first stage -- the formation of nucleation centers. In 
actuality, however, the initial size distribution of the particles may be substantially 
distorted because the rate of mass exchange depends on the curvature of the surface and be- 
cause the Thompson critical dimension r is variable. When the vapor is no longer super- 

cr 
saturated, the value of r increases, and the fine aerosol particles may go over into the 

ar 
region of subcritical dimensions, with subsequent evaporation. This leads to a reduction in 
the calculated aerosol concentration; the reduction may be misinterpreted as being the result 
of coagulation. We should point out at once that this study deals with aerosols in whose for- 
mation the coagulation process is not decisive. Naturally, the process of reduction of the 
calculated particle concentration cannot be investigated within the framework of a monodis- 
perse approximation. Moreover, we shall show that this also cannot be done within the frame- 
work of the widely used model which takes account of the distribution function by introducing 
its first four moments. 

i. Applicability of Moment Equations. The model, as is known, is based on the approxi- 
mate solution of the kinetic equation for the particle-size distribution function f(r, t) [i] 

of o �9 
ot t~ -~r (r/) = 5 (r - -  rcr ) ] ,  ( 1 . 1 )  

where r is the rate of growth of the particles; J is the rate of nucleation center formation, 
calculated, for example, by the Frenkel--Zel'dovich formula;~ is the Dirac delta function. 

Equation (i.i) is obtained from the Fokker--Planck equation by disregarding the diffusion 
term and introducing a source which takes account of the nucleation. The four-moment approxi- 
mation [2] was obtained on the assumption of a free-molecule regime of ~article growth, without 
taking account of the effect of the curvature of the particle surface (r independent of r). 
It is also assumed that there are no particles of subcritical dimensions (r < r ). Following 

cr 
n 

[2] we multiply Eq. (i.i) by r and integrate from r to ~; introducing the following nota- 
' cr 

tion for the moments of the distribution function: 

~n  = ~ rn /dr  (n = O, 1, 2 . . . ) ,  
rat 

we find 

d~]n ~ -n O/ n drcr 
dt - -  J r ~ d r - -  rcr ](rcr  ) dt ' 

rcr 

i i Or (r]) dr = - -  rcr ] (rcr) r (rcr) - -  n r r n - l f d r ,  
t a r  rat 

w h e r e  i t  i s  a s s u m e d  t h a t  r n f ( r )  + 0 a s  r + ~ .  
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Thus, from (l.1) we have 

d~ n 
dt 

i n n [" drcr] , ,  , - . n  rrn=Vdr -t- Jrcr  -t- rcr r (rcr) - -  - - ~ j  ! trcrT. 
r:c r ' 

(1.2) 

In [2-5] the last term on the right side of (1.2) is absent for some reason. Perhaps there 

was a mistake due to an unfortunate choice of notation: r(rcr) ~ rcr and drcr/dt ~ rcr," the 

terms in square brackets cancel each other out. In actuality, however, they are very different; 

dr /dt is the rate of growth of the critical dimension, i.e., a quantity arising out of the 
cr 

variation of supersaturation in the system, while r(rcr) is the rate of growth of the particles 

of critical size. In general, by the definition of critical dimension, r(rcr) is equal to 
i 

zero; however, in this model, which does not take account of the fluctuation processes when 

r = rcr, the assumption that r(rcr) # 0 is necessary. The "lost" term on the right side of 

(1.2) has a theoretical impact on the applicability of the moment equations used in [2-5], 
since the presence of f(rcr ) in these equations requires a knowledge of the whole distribution 

function in the calculations. 

Let us try to determine when these equations may nevertheless be used. 
write the kinetic equation (i.i) without particles of subcritical size: 

To do this, we 

0f 0 
Ot + ~ ( r / ) = O '  r ~ ] r c r ,  oo[. ( 1 . 3 )  

Then we must have the boundary condition for r = r : 
cr 

[ d r c r ] / (  r ~ " drcr 
r (rcr) - -  dt. J cr# ~ J for  r (rcr) ----~-/- > O. 

The last expression is the relative velocity of "motion" of the particles (in the space of 
dimensions) in terms of the movable left-hand boundary of the region in which Eq. (1.3)is 
given; the product on the left side of the boundary condition is obviously the flux of par- 
ticles through the boundary. As in [i], we assume that the form.ation of new particles of 
subcritical size takes place as the result of nucleation. For r -- drcr/dt < 0 the formula- 

tion of the boundary condition for r = r for the first-order equation (1.3) is incorrect. 
cr 

n 
Integrating (1.3) multiplied by r , we obtain (for r = const(r)) 

( 

m r  - -  ~ > O, ( 1 . 4 )  
tJr~cr ~ r drcr 

d~n n'r~2n-1 -t- drcr, ~ dr cr _ 

The moment equations of [2-5] coincide with (1.4) when r -- drcr/dt > 0, and in this case it 

is correct to use them. The case r -- drcr/dt < 0 corresponds to a condition of evaporation 

(r < 0 drcr/dt = 0) or rapid growth of r (the critical dimension "overtakes" the distribu- 
' cr 

tion function). The question that naturally arises is this: Which parameter of the aerosol 

determines the sign of the difference r -- dr /dt and what is the region of its values for 
which the moment equations may be used? cr 

First we shall consider the case of free-molecule growth of the particles: 

a*dr/d~ s = S - -  Pr/Poo. ( 1 , 5 )  

2cxm . ~a*Poo " ] / ~  
Here a*= rx-/~, dT! 11 ~-~dt ; r is the dimension of a particle of condensate, referred 

@r I 

to the "molecular" dimension r1(4~r~p/3 = m); m is the mass of a moleculel p is the density of 

the condensate; o is its surface tension; T is the temPerature (the same for the gaseous and 
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condensed phases); a is the evaporation coefficient; p~(T) is the saturated vapor pressure 
above a plane surface; on the other hand, the pressure of the vapors near the surface of a 
particle is determined by taking account of their curvature: 

Pr = P~  exp (~*/r).  (1 .6 )  

The supersaturation S in the system is expressed in terms of the critical dimension: 

S = e x p  (~*/~r). (1.7) 

Let us analyze the processes in the aerosol after the formation of nucleation centers, when 
the supersaturation is no longer high (S ~ i). As can be seen from (1.7), in this case we 
must have r >> o* (the value of o* for most substances is several units or tens). Using 

ar 
the expansion for exp in (1.6), (1.7), we find from (1.5) that 

dr/d~: ---- i/rcr t / r .  (1.8) 

Suppose that at the initial moment all the r >> rcr, which is usually the case after the 

formation of nucleation centers is completed. Then the growth rate dr/dTf (1.8) for particles 

of different dimensions will be nearly the same, and we can analyze the formation of the aero- 
sol in the monodisperse approximation. If at time Tf the total number of molecules per unit 

volume of aerosol is NV(T f) and the number of condensate particles is n, then the super- 

saturation will be S = (N V -- nr~)/N . Hence, taking account of (1.7) for r >> o* we have 
' cr 

nr 3 = N v  - -  N ~  - -  ~ * N ~ / ~ r .  (1 .9 )  

For the  s y s t e m  o f  e q u a t i o n s  ( 1 . 8 ) ,  ( 1 .9 )  an a p p r o x i m a t e  s o l u t i o n  r ( T f )  can be  c o n s t r u c t e d  by 

the method of successive approximations. Taking account of the fact that ~*N /rcr << N , we 
take as the first approximation 

nr 3 = NV - -  N| = N, 

where N(Tf) is the number of molecules in the condensate if we assume phase equilibrium in 

the system. 

Expressing r from this and substituting into (1.8), we find 

l / rcr  = (l /3)n-1/aN-2/adN]dT l + (nlN)  1/3. (l.iO) 

Using this expression in (1.9), we can find the next approximation for r, and so on. If the 

higher derivatives dkN/dT~- are small, this process converges very rapidly, and even the first 

approximation is quite acceptable for our calculated analysis. The ratio r/rcr = 1 + (i/3)n -=/3 

N-I/3dN/dTf obviously characterizes the "distance" between the dimensions of the particles and 

the critical dimension. As r/r + I, this distance becomes small, and if we take account of 
cr 

the finite (nonzero) dispersion of the distribution function, the critical dimension "over- 

takes" the dimensions of the particles. Since n = const (for r > r the number of particles 
cr 

in the system remains unchanged), it is the value of N-~/3dN/dTf that will be decisive. If it 

tends to zero, then r * r; if it has a nonzero value (although one that depends on Tf), r 
cr cr 

will not catch up with r. The form of the function N(Tf) for which the boundary between the 

two regimes has the simplest appearance can be found from the condition 

N-1/3dN/d~l  = const, i . e . ~ N =  const~/~; (1 .11 )  

this is in fact a function of the external mass source (or sink). Let us now consider systems 
for which a relation of the form N = NoT~ holds. From (i.ii) it follows that for values of 
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< 3/2 the critical dimension "overtakes" the dimensions of the particles. 

have 

N ~i /3(  ~ _1/8~vI~-1 n l f S~v l~ ) .  l / rcr  = ~-5- n I + 

If ~ > 3/2, then v/3 -- 1 > --~/3, and therefore for large values of Tf 

rcr N on) 1/3 T 

From (I.i0) we 

From this we can see the second boundary for ~: for 3/2 < ~ < 3 the critical dimension in- 
creases but does not "overtake" the particle dimensions; for v = 3 it remains unchanged, i.e., 
the supersaturation does not decrease; and for ~ > 3 the supersaturation in the system in- 
creases. This last statement indicates that the rata at which supersaturation comes about is 
so high that condensation on the existing nuclei does not ensure removal of the excess vapor; 
nucleation centers are formed continuously. Thus, the boundary for the unconditional appli- 
cability of the moment equations is ~ ~ 3/2;in all other cases they may be used only at the . 
stage before the critical dimension has "overtaken" the distribution function. This is the 
stage to which the calculations of [2-5] are restricted. We can recommend an a posteriori es- 
timate of the applicability of the moment equations: estimating particle dimension from the 
mathematical expectation and variance of the distribution function the minimum and comparing 
it with the critical dimension. 

For a continuous regime of growth of condensate particles, we can carry out a similar 
analysis and distinguish the boundary values of v. From the equation of diffusion growth of 
a particle 

dr mD 
-~ - -  r ~ T  r (p - -  Pr) 

in a manner similar to (1.8), we obtain 

dr t t l d~c - - - - d t .  
d~ c r r ~ '~  r~pkT 

The a n a l y s i s  shows  t h a t  f o r  t h e  r e l a t i o n  N = NoT~ when ~ < 1 t h e  c r i t i c a l  d i m e n s i o n  o v e r t a k e s  

t h e  p a r t i c l e  d i m e n s i o n s ,  f o r  1 < v < 3 / 2  i t  i n c r e a s e s  b u t  d o e s  n o t  c a t c h  up w i t h  r ,  a n d  f o r  

> 3 / 2  i t  i s  i m p o s s i b l e  t o  r e m o v e  t h e  s u p e r s a t u r a t i o n  b y  c o n d e n s a t i o n  on  t h e  e x i s t i n g  p a r -  
t i c l e s ,  s o  t h a t  r d e c r e a s e s .  I t  s h o u l d  b e  n o t e d  t h a t  t h e  b o u n d a r y  f o r  t h e  r e m o v a l  o f  s u p e r -  

c r  

s a t u r a t i o n  i n  t h e  f r e e - m o l e c u l e  r e g i m e  o f  g r o w t h  i s  ~ < 3 ;  t h e r e f o r e ,  when s u p e r s a t u r a t i o n  i s  

p r o d u c e d  a t  a r a t e  v ~ ( 3 / 2 ,  3) i n  t h e  s y s t e m  a f t e r  t h e  f o r m a t i o n  o f  t h e  n u c l e a t i o n  c e n t e r s ,  
we h a v e  f r e e - m o l e c u l e  g r o w t h  o f  t h e  c e n t e r s  a n d  t h e  s u p e r s a t u r a t i o n  d r o p s .  H o w e v e r ,  a s  t h e  
p a r t i c l e s  i n c r e a s e  i n  s i z e ,  t h e i r  r e g i m e  o f  g r o w t h  c h a n g e s  t o  a c o n t i n u o u s  r e g i m e  w h i c h  d o e s  
n o t  e n s u r e  r e m o v a l  o f  t h e  v a p o r s .  T h e r e f o r e  t h e  s u p e r s a t u r a t i o n  i n c r e a s e s  o n c e  a g a i n ,  and  
we may h a v e  r e p e a t e d  f o r m a t i o n  o f  p a r t i c l e s  t h r o u g h  n u c l e a t i o n .  As a r e s u l t ,  we o b t a i n  a b i -  
m o d a l  o r  e v e n  p o l y m o d a l  a e r o s o l .  

The investigation we carried out relates to sufficiently large values of r, and in this 
sense it is asymptotic (S § i); it does not enable us to consider the stage of nucleation- 
center formation and the immediately following stage of particle growth. We therefore carried 
out an additional numerical investigation of the process of condensation in an aerosol. 

2. Numerical Investigation. The basis of this investigation is the chain of Becker- 
DDhring kinetic equations 

dni c{- ln i -1  (ci + a~) n{ + a~+ln~+l, i = 2 ,3  . 
d-~-- t ~- 62i " "  ( 2 . 1 )  

n 1 -~ N v - -  ~ ini, 
2 

w h e r e  n .  i s  t h e  c o n c e n t r a t i o n  o f  p a r t i c l e s  c o n t a i n i n g  i m o l e c u l e s ;  c .  i s  t h e  f r e q u e n c y  o f  
1 1 

a t t a c h m e n t  and  a .  i s  t h e  f r e q u e n c y  o f  d e t a c h m e n t  o f  v a p o r  m o l e c u l e s ;  t h e s e  a r e  c a l c u l a t e d  f r o m  
1 

the well-known formulas: 
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03~Poo (O*) 
= = ': = =ry/  

the denominator of the first term on the right side of (2.1) (where ~ai is the Kronecker 
delta) enables us to make sure that molecules in binary collisions are not counted twice. 

We consider the isothermal process; then after the introduction of the dimensionless 
nikT / 

= , ]/ ~-~t the system (2.1) takes the following form variables S~ p~ 1:---- ar~po~ -'Sh 

d S i  S S i  1 * 
- ( s  + + + 

c o  

2 

where a~ = exp . 

The initial conditions are: for all i i> 2 we have S i 

quantity S V varies with time according to the law S V = SVo 

(2.2) 

= 0 (there is no condensate); the 

+ S x 9. In its complete form the 
T 

system (2.2) can be used for numerical calculation on computers only for small values of 

i (i < i0~); we are interested in much larger values (i ~ i01~ A direct solution of 

(2.2) for such values of i is impossible, but we do not need one; for sufficiently smooth dis- 

tribution functions it is possible to aggregatize the system, i.e., to separate the particles 
into classes. The equations (2.1) for i = 3, 4, ... can be written in the form 

dn~/dt = gi - - g i + l ,  gi -~ ci- i  n i - i  - -  aini, 

where gi is the flux of particles in the space of dimensions. Then the number of particles 
l 

containing between j and I molecules will be njz ----~ ni and can be determined from the equation 
3 

dnjz/dt = gj - -  gz+~- ( 2 . 3 )  

The expressions for the flux gi are selected in accordance with the sign of the difference 

(ci-~ - a i) �9 

On 

a. ~ .:On 
gi  = ai (n i -x  hi) ~- (Ci-- 1 - -  a i )  n i -  1 ~ - -  a i  ~ ~- (c i_  1 - -  a i )  n j i ,  

and the quantity 3n/~i is is approximated in terms of nji and nil. It is found that for 

values of i < icr the diffusion coefficient in the space of dimensions is equal to ci-~, while 

for i > icr it is equal to a i. The first value of the diffusion coefficient, ci-:, was used 

in the subcritical region by Zel'dovich in deriving the formula for the rate of nucleation; 

in [l] Bakhanov used for the diffusion coefficient the expression (ci-~ +ai)/2, which follows 

from the symmetric difference scheme he adopted. However, this cannot be considered satis- 

factory, since when c § 0, the solution of the kinetic equation with such a diffusion coeffi- 
cient differs greatly from the solution of the system (2.1). 

The aggregatized system of equations (2.3) was solved by a rigidly stable numerical 
method. The most characteristic results of the calculations are shown in Figs. i and 2 
(0* = i0, SVo = 0, ST = i). In Fig. la we show for different values of ~ (~ = i, 3 on curves 

I, 3) the variation of the critical dimension r and the average-mass dimension r of the 

particles in the aerosol; r = ~*/In S is shown by the solid curves, and r= i4/~S~ iS 
cr 
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by the dashed curves. The figure makes it clear how the critical dimension for the valuer = 

1 (< 3/2) "overtakes" the average-mass dimension, while for v = 3 it does not change after 

the formation of nucleation centers. Figure ib illustrates the influence of these processes 

on the calculated concentration of particles n = ~ n i  = N ~ S ~ :  in the first case (~ = i) 
2 2 

after the stage of nucleation-center formation is completed, the number of particles in the 
aerosol decreases monotonically (because the smaller particles evaporate), but in the second 
case (v = 3) it remains constant. Figure 2 indicates that for values of v < 3/2 a large pro- 
portion of the aerosol particles may be in the subcritical region (i < icr) ; this figure shows 

the distribution of condensate particles according to size (v = I, m > 103). 

The calculation also showed that when ~ < 3/2, the rate of growth of the critical dimen- 
sion for large values of m is practically independent of v. Moreover, if the distribution 
function is plotted logarithmically against time it does not change its shape but is displaced 
along the log i axis, i.e., there exists an asymptotic solution of the problem of condensation 
growth of a polydisperse aerosol. 

3. Asymptotic Solution. Thus, our analytic and numerical investigations have shown that 
when v < 3/2 (for a free-molecule regime of particle growth) the critical dimension "over- 
takes" the distribution function. Smaller particles become subcritical and begin to evaporate, 
i.e., the total number of particles in the aerosol decreases. In order to ensure in this case 
the supersaturation is removed, the dimensions of the remaining particles must increase more 

rapidly than mfv/3. As the critical dimension approaches the value of r corresponding to the 

maximum of the distribution function, the number of particles going into the subcritical region 
per unit of time increases; consequently the rate of growth oftthe remaining particles in ~ 
creases even more. However, it cannot exceed the limit r ~ mft12, since for thzs' value r no 

cr 
_ .  ~I~ longer "overtakes" r. As a result, r and the aerosol particles increase like m /2 + ~tmf ) 

cr 

This argument is only qualitative and is open to many objections. In what follows, how- 
ever, we shall show that for ~ < 3/2, rcr does in fact behave asymptotically like /~Tf, and so 

do the average dimensions of the aerosol particles. Moreover, it is found that there exists 
an asymptotic form of the particle-size distribution function which depends only on a single 
parameter of the initial distribution function. We write the kinetic equation for the 

425 



distribution function, using the expression for dr/dTf (1.8)" 

a~--; + ~ ~ r" (3.1) 

We assume that there exists a maximum particle dimension r such that f(r) = 0 when r > r . 
m m 

Such an assumption is valid for all real systems. In the variables z = r/r , dq = dTf/r~ Eq. 
(3.1) takes the form m 

On4" ~ b -  - - z ( b - - t )  O.f ( 3 . 2 )  - -  -g7 = O. 

Here b = rm/rcr, 

function 

and for drm/dT f we again use the expression (1.8). 

into Eq. (3.2), we obtain 

After introducing the new 

a-!C-- ( b - - ~ ) z - - b+  -gTz + i d-'q " ~ = 0 "  " 
On (b--i) z--b+-~'- 

As i n  t h e  a n a l y s i s  o f  t h e  s y s t e m  ( 1 . 8 ) ,  ( 1 . 9 ) ,  we u s e  s u c c e s s i v e  a p p r o x i m a t i o n s .  As o u r  
i n i t i a l  a p p r o x i m a t i o n ,  we t a k e  ~ when b = c o n s t ;  t h e  l a s t  t e r m  on t h e  l e f t  i n  ( 3 . 3 )  t h e n  
v a n i s h e s :  

oq~ z - -  t [(b - -  t )z  - -  t1 ~ = O. ( 3 . 4 )  
oq z 

The equation of characteristics for (3.4) can be integrated; taking account of the fact that 
for large Tf the values of b~ [0, 2], we write the integral 

(i -- z)[ t  -- (b - -  i)z]I/(I-~) = C exp[(2 -- b)q]. (3.5) 

For n = 0 we have 

C = , ( t  - -  z o ) [ l  (b - -  t ) zo l~ / (  ~-b~. (3 .6 )  

An analysis of (3.5),(3.6) shows that the characteristic with zo = 1 is z = I, while the 
characteristics with Zo < 1 arrive at the point z = 0 at time n = in C/(b -- 2), corresponding 
to the total evaporation of a particle with initial dimension Zo. Consequently, for large 
values of ~ the particle-size distribution is determined only by the largest particles of the 
initial aerosol, i.e., by particles for which Zo~l: In this case for C (3.6) we can use 
the expansion 

C .~, ( i  - -  Zo)(2 b):/: l -b) .  

Eliminating the the constant C between the equations (3.5) and (3.7), we find 

(3.7) 

l z o (~- Z) [ t  2 - -  b ] l / ( t~- l )  - = - - N -  ~) :J e x p  [@ - 2) h i .  
(3.8) 

Along the characteristic ~(z~ .~) = ~0[z0(z~ 9)]. 

Suppose that the initial distribution function f(z, 0) has in a neighborhood of z = 1 the 
form 

I(z, O) = I(zo) = A ( i  - -  Zo)V ~ 

i.e., at the point zo = 1 it takes on a nonzero value (for y = 0) or tends to 0 at a different 
rate (y @ 0). Then from the definition of ~(z, ~), we have 
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r = A ( I  - -  zo)V+l[l/zo -- b + 11 ~ A(2 - -  b)(l - -  Z o ) Y + l ~  

A(2 b)(l--zo)~+~Zexp - -  ( b - - l )  dq . 
] (z, ~) = (i - ~) [i - (b - t) ~1 

' 0 

(3.9) 

After substituting the value of (i- zo) from (3.8) into (3.9), we obtain an asymptotic ex- 
pression for f(z, n): 

u (b-- 2) (?-~ t) 1 
/ ( z '~ l )=~P(z 'b)[2(b-- l )~l+r '~~ •  2(b-- I) - - - 2 - "  ( 3 . 1 0 )  

Here we have taken account of the fact that for b = const it follows from drm/dT f = (b -- l)/r 
that m 

= 2 ( b - - t ) ~ j + r ~ o ,  N In [2(b t ) ~ j + r ~ o ] .  F m ~ - -  

The e q u a t i o n  o f  m a t e r i a l  b a l a n c e  f o r  t h e  a e r o s o l  ( 1 . 9 )  i n  t h e  n o n m o n o d i s p e r s e  c a s e  t a k e s  t h e  
fo rm 

r ~  

S ]  (r, ~r radr = N v  - -  N ~  ~*N~ (3 .  l l )  
rer 

0 

S u b s t i t u t i n g  t h e  r e l a t i o n  ( 3 . 1 0 )  i n t o  t h e  i n t e g r a l  ( 3 . 1 1 ) ,  we o b t a i n  

1 1 

r~ ~ ] (z, T]) zadz ---- [2 (b - -  1) ~I + r~0] x+2 ~ ~ (z, b) zadz ~ N. 
0 0 

The last integral is independent of Tf. For the sake of simplicity, we set r m 

from (3.12) we find for the case N = NoT~ that 

•  2 = v ,  b = i + ( 7 +  1)/(7-~ I + 3 - - 2 v ) .  

(3.12) 

>> rmo, and 

(3.13) 

The asymptotic expression (3.9) for the distribution function f(z, Tf) takes the form 

z(i--z) ~ (3.14) 

/ (z, ~1) = B J ~  -~ [ t -  (b - t) ~F +5-~v' 

w h e r e  Bf = A [ 2 ( b  -- 1 ) ] 9 - 2 ( 2  -- b)  Y+5-2v = c o n s t ( z f ,  z ) .  The s e c o n d  a p p r o x i m a t i o n  f o r  ~ c a n  be  

f o u n d  as  f o l l o w s .  I f  i n  ( 3 . 1 1 )  we do n o t  d i s r e g a r d  t h e  t e r m s  o * N ~ / r c r ,  t h e n  t h e  v a l u e  b2 d e t e r -  

mined  f r o m  ( 3 . 1 2 )  w i l l  be  t i m e - d e p e n d e n t .  S i n c e  ~*N / ( r c r N  ) + 0 f o r  l a r g e  v a l u e s  o f  T f ,  t h e  t e r =  

w h i c h  mus t  be  a d d e d  t o  t h e  v a l u e  o f  b f o u n d  i n  t h e  f i r s t  a p p r o x i m a t i o n  w i l l  be  s m a l l .  A f t e r  

s u b s t i t u t i n g  t h e  v a l u e  b = ( z f )  f o u n d  i n  t h i s  way i n t o  ( 3 . 3 ) ,  we l o o k  f o r  t h e  s e c o n d  a p p r o x i m a -  

t i o n  ~ z .  As z f  i n c r e a s e s ,  ~2 § r  We can  c o n v i n c e  o u r s e l v e s  o f  t h i s ,  f o r  e x a m p l e ,  by  e x p a n d -  

i n g  t h e  l e f t  s i d e s  o f  ( 3 . 1 2 )  i n  a s e r i e s  i n  b i n  a n e i g h b o r h o o d  o f  t h e  f i r s t  a p p r o x i m a t i o n ,  

determining the additiveterm s from this, and substituting it into (3.3). For the analy- 

sis it is quite possible to use a simple first approximation. Summing up our discussion thus 
far, we can say that we have proved the asymptotic convergence of the initial distribution 
function to the function (3.14), which depends only on the behavior of the initial function 
near r = rm. For sufficiently large values of ~f the maximum dimension increases according 

to the law r = /2(b -- l)Tf, and when there are no sources of vapor (~ = 0), we have a more 
m 

exact formula: 

2 rm = V 2 (b - -  1) ~s + rmo. (3.15) 
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v / b - - t 2  ~T} /2  Since r = r /b, it follows that ~r -7 Tf ; the quantity o*N /r N when N 
cr m ~ cr 

const will approach 0 if v > --1/2. This last condition is the lower boundary for the exis- 

tence of an asymptotic solution. The fact that the region of existence extends to negative 
values of ~ is of some interest, since it indicates the existence of evaporation regimes (N 
decreases as time increases) for which the aerosol particles nevertheless grow. 

Figure 3 shows the asymptotic distribution functions for y = 0, i, and 2 (curves 1-3, 
respectively) when ~ = 0 (Fig. 3a) and for ~ =-0.5, 0.5, and 1 (curves 1-3, respectively) 
when 7 = 2 (Fig. 3b). The graphs show the normalized functions plotted against the coordi- 
nate ~ = r/rcr = bz; the value ~ = 1 corresponds to the critical dimension. It can be seen 

that a large number of particles have subcritical dimensions; in most cases the maximum of 
the distribution function is also near r = r 

or" 

From (3.14) we can also obtain the rate of growth of the average particle dimension. 

To see this, we note that by the definition of average, 

where 

f (r, T]) ridr i + l  ! i (z, Ti) zidz 
{ - h  o rm 

r i  k -- r m _k+l 1 

.1" s (r,'~) r~<e, "" j" S (~, "~k ~'<<~ 
0 0 

i - - h  = r.~ LdLh ,  

1 

z i+1 (t - -  z)~ dz = cons t  (TS). �9 
L i  = [1 -- (b -- t) z] v+5-2v 

0 

Therefore rik(mf) = Cikrm(rf). 

For a continuous regime of condensate particle growth we can carry out an analogous 

construction. In this case the kinetic equation 

in the variables 

cp-=f  b - - l )  z - -  b-~+ exp ( b - - t )  dil , z =  r-L- d ~ = _ -  3 -  
z r m ' r m 

(3.16) 

takes the following form for the first approximation to ~ : 

0~ z -- I 
[ ( b - - l )  z ~ + ( b - t )  z - t 1 ~ = O .  aB 2 

F r o m  t h i s ,  a f t e r  some  t r a n s f o r m a t i o n s  a n a l o g o u s  t o  ( 3 . 5 ) - ( 3 . 1 4 ) ,  we f i n d  

l (z, ~ )  = B ~ - ~ / ~ z  ~ (1 - ~)V (~ - z~) h ~ + ~ ) - ~  (z - ~ ) h ~ ( ~ + , - ~  (3.17) 

- -  2(Zl-- I)/(~'2--Zl); &'2 are the roots of the equation z 2 + z- where h I = z~ (z2-- I)/(ZI z~); h2 -- z2 
3 1 / 3  

i/(b -- i) = 0; b = 1 + (y +1)/(2(Y+ i) + 3 -- 3v). Here r = [3(b -- l)m + rmo] and the 
m c 

critical and average particle dimensions also behave in this way. An asymptotic solution 
exists for--1/3 < , < i. 

428 



4 .  Comparison with Experimental Results. We shall now consider some results which may 
be useful in practice. Thus, for aerosols formed through homogeneous nucleation, the values 
ol 7 may be very large. For very large values of y the distribution functions (3.14) and 
~..17) will tend, respectively, to 

f~ -+B~V~-'/3B ~ [(B + 3) 5v-~' (2~ - -  3 ) 'v -7 ]  ~/~ exp L 3--~-~-~-B j .  

(4.1) 

(4.2) 

Here we again use the variable ~ = r/r as being more convenient for practical use and 
cr' 

being determinable from the aerosol spectrum with greater accuracy. Thiscan be seen if we 
multiply (3.1) and (3.16) by r s and integrate from 0 to ~; in a manner analogous to (1.4), 
we obtain 

d ~ 3 / d T ]  : 3 ( ~ J r c r -  ~1) ,  d~3/dve : 3 ( ~ J r c r -  ~ o ) .  

If in the experiment the analysis of the disperse state of the aerosol was preceded by a 
period during which its mass remained almost unchanged (i.e., d~3/dT = 0), then rcr = r21 

for free-molecule particle growth and rcr = r~o for continuous growth; therefore the value 
of rcr can be determined with good accuracy. Since the formation of aerosols of nonvolatile 
compounds takes place at high temperatures, while the disperse analysis in most cases is 
carried out at room temperature, it followsthat for applicability of asymptotic formulas 
we must have ~ < 3/2 (or ~ < l) during the cooling period as well. The asymptotic distribu- 
tion functions were found to be representable as the product of two functions: One of these 
depends only on time, while the other depends only on z. Therefore the normalized distribu- 
tion function depends only on z, and when it is plotted logarithmically as f(in r) = f(in z + 
In rm) , it remains unchanged in shape as time increases, simply shifting along the In r axis. 

The functions we have obtained are characterized by low dispersion (see Fig. 3); the 
maximum dimension is about 1.5-2 times the average dimension. On the other hand, dimension 
spectra actually observed have a much greater dispersion. This difference may perhaps be ex- 
plained as follows. In most cases the temperature of the different parts of the volume in 
which the condensation takes place is nonuniform; the aerosol formation often takes place 
during the process of cooling of the suspension, i.e., when there is a temperature gradient 
in it. The dimensionless times Tf and T c are proportional to the quantity p~, which is a 

sharply varying function of temperature: p~ = p* exp(--I/RT) (where I is the heat of phase 
transition)~ 

Suppose that the two parts of the volume have a temperature difference T' -- T" = AT; 
then 

~ [ i A T  ~ r m  - ~f [ l h T  
p ~ = p ~ e z p [ - ~ - ~ ) ,  ,, - -  --~- = exp . 

r m ~f 

The ~ compee~e distribution function is the sum of the distributions f' and f", which when 
plotted on log paper will be displaced from each other by a distance IAT/(2RT2). If the 
density of the aerosol-particle suspension is the same throughout the volume, its colder 
regions will contain [--31AT/(2RT2)] times as many particles and will make the main contribu, 
tion to the complete particle-size distribution function. When the suspension cools by 
giving up heat to the external environment (the wall of the vessel), the regions that are 
decisive (for the calculated concentration) will be those near the wall. In the first approxi- 
mation, near the wall we may assume that 3T/~x = const; then for the complete distribution 
function we can write (to within a constant factor) the following expression: 

I (In ~) = S [ (|n ~" In q) q-~d In  q~ (4.3) 
O 

w h e r e  i n  q = l ( T  - -  T s ) / ( 2 R T ~ )  , T i s  t h e  w a l l  t e m p e r a t u r e .  T h i s  i n t e g r a l  r e p r e s e n t s  t h e  
S 

su~nation of the calculated concentration of particles over the regions with different tempera- 
tures, Since there are few particles in the regions that have been heated more, the upper 
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limit extends to infinity. Substituting ff from (4.1) into (4;3), we obtain 

/ ( ~ ) =  ---~- 2 ----~-]  exp . (4.4) 

% [2---T r 
H e r e  qo = 1 f o r  ~ < 2 and  qo = ~ /2  f o r  ~ > 2.  F o r  ,) = 0 i t  i s  p o s s i b l e  t o  i n t e g r a t e  ( 4 . 4 ) :  

- ~  [ 2 - - ( 9 u  3 + 9 u  ~ + 6 u + 2 )  e x p ( - 3 u ) ] ,  ~ < 2 ,  . 5 )  (4 ! (~)= ] 

[ ~  ~/>2, 

where u = ~/(2 -- ~). 

The distribution function (4.5) corresponds to the formation of an aerosol during the 
process of cooling due to heat exchange with the external environment; there are no vapor 
sources. Such a case was realized, in particular, in the experiments of [6]; the suspension 
of oxide particles formed as the result of the combustion of magnesium powder became cooled 
when it moved in the reaction tube. Since the particle temperature was lower than the melting 
point of the oxide, there was no coagulation (this is confirmed by the fact that the aerosol 
contained only single crystals). In Fig. 4 the distribution function f(~) of (4.5) is com- 
pared with the histogram* constructed from the results of the experiments in [6]; this scale 
factor in the transition from the experimental value of r to the dimensionless variable ~ was 
so chosen as to make maxima coincide. 
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